You are receiving this pop-up because this is the first time you are visiting our site. If you keep getting this message, please enable cookies in your browser.
You are using software which is blocking our advertisements (adblocker).
As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site. Thanks!
You are receiving this pop-up because this is the first time you are visiting our site. If you keep getting this message, please enable cookies in your browser.
US study: Veg surface structure and foodborne illness
Researchers from University of Illinois (U of I) chose 24 common salad vegetables to study the ability of pathogenic viruses to adhere to their surfaces in an effort to understand and eventually reduce incidences of foodborne illness. The research could be used to breed vegetable varieties that reduce adherence of viruses in the future.
The researchers inoculated leafy salad greens and tomatoes with a swine virus that mimics human rotavirus, a common pathogen responsible for diarrhoea, vomiting, fever, and abdominal pain. After exposing the vegetable surfaces to the virus, the researchers rinsed the vegetables twice with a standard saline solution.
“We correlated virus adherence to roughness of the surface at different scales. We also looked at the chemistry of the proteins and waxes associated with the leaf cuticle – a waxy layer that protects the plant against diseases and reduces water loss,” Juvik explains. “Before this, no one had tested the relationship between chemistry and surface texture on the adherence of virus particles.”
The researchers found a thousand-times difference in the number of viral particles adhering to different types of leafy greens and tomatoes. Vegetables with three-dimensional crystalline wax structures on the leaf cuticle harboured significantly fewer virus particles after rinsing. This was counterintuitive, as it was expected that small virus particles could “hide” in the rough structures of these cuticles.
The researchers have already repeated the study using the bacterium E. coli, but they plan to look at even more vegetable varieties and pathogens in future studies.